Intestinal fructose transport and malabsorption in humans

Author:

Jones Hilary F.1,Butler Ross N.1,Brooks Doug A.1

Affiliation:

1. Mechanisms in Cell Biology and Disease Research Group and Paediatric Education, Research and Innovation Centre, Sansom Institute School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia

Abstract

Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose ( r = 0.86, P < 0.001). Thus there is a dose-dependent and limited absorption capacity even in healthy individuals. Changes in fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3