The probiotic Lactobacillus plantarum counteracts TNF-α-induced downregulation of SMCT1 expression and function

Author:

Borthakur Alip1,Anbazhagan Arivarasu N.1,Kumar Anoop1,Raheja Geetu1,Singh Varsha1,Ramaswamy Krishnamurthy1,Dudeja Pradeep K.1

Affiliation:

1. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois

Abstract

The major short-chain fatty acid (SCFA) butyrate is produced in the colonic lumen by bacterial fermentation of dietary fiber. Butyrate serves as primary fuel for the colonocytes and also ameliorates mucosal inflammation. Disturbed energy homeostasis seen in inflamed mucosa of inflammatory bowel disease patients has been attributed to impaired absorption of butyrate. Since sodium-coupled monocarboxylate transporter 1 (SMCT1, SLC5A8) has recently been shown to play a role in Na+-coupled transport of monocarboxylates, including SCFA, such as luminal butyrate, we examined the effects of proinflammatory TNF-α on SMCT1 expression and function and potential anti-inflammatory role of probiotic Lactobacillus species in counteracting the TNF-α effects. Rat intestinal epithelial cell (IEC)-6 or human intestinal Caco-2 cells were treated with TNF-α in the presence or absence of Lactobacilli culture supernatants (CS). TNF-α treatments for 24 h dose-dependently inhibited SMCT1-mediated, Na+-dependent butyrate uptake and SMCT1 mRNA expression in IEC-6 cells and SMCT1 promoter activity in Caco-2 cells. CS of L. plantarum (LP) stimulated Na+-dependent butyrate uptake (2.5-fold, P < 0.05), SMCT1 mRNA expression, and promoter activity. Furthermore, preincubating the cells with LP-CS followed by coincubation with TNF-α significantly attenuated the inhibitory effects of TNF-α on SMCT1 function, expression, and promoter activity. In vivo, oral administration of live LP enhanced SMCT1 mRNA expression in the colonic and ileal tissues of C57BL/6 mice after 24 h. Efficacy of LP or their secreted soluble factors to stimulate SMCT1 expression and function and to counteract the inhibitory effects of TNF-α on butyrate absorption could have potential therapeutic value.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3