Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice

Author:

Asano Yasunari1,Hiramoto Tetsuya1,Nishino Ryo2,Aiba Yuji2,Kimura Tae1,Yoshihara Kazufumi13,Koga Yasuhiro2,Sudo Nobuyuki1

Affiliation:

1. Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan;

2. Department of Infectious Diseases, Tokai University of Medicine, Isehara, Japan; and

3. Department of Cerebral Research, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan

Abstract

There is increasing interest in the bidirectional communication between the mammalian host and prokaryotic cells. Catecholamines (CA), candidate molecules for such communication, are presumed to play an important role in the gut lumen; however, available evidence is limited because of the lack of actual data about luminal CA. This study evaluated luminal CA levels in the gastrointestinal tract and elucidated the involvement of gut microbiota in the generation of luminal CA by comparing the findings among specific pathogen-free mice (SPF-M), germ-free mice (GF-M), and gnotobiotic mice. Substantial levels of free dopamine and norepinephrine were identified in the gut lumen of SPF-M. The free CA levels in the gut lumen were lower in GF-M than in SPF-M. The majority of CA was a biologically active, free form in SPF-M, whereas it was a biologically inactive, conjugated form in GF-M. The association of GF-M with either Clostridium species or SPF fecal flora, both of which have abundant β-glucuronidase activity, resulted in the drastic elevation of free CA. The inoculation of E. coli strain into GF-M induced a substantial amount of free CA, but the inoculation of its mutant strain deficient in the β-glucuronidase gene did not. The intraluminal administration of DA increased colonic water absorption in an in vivo ligated loop model of SPF-M, thus suggesting that luminal DA plays a role as a proabsorptive modulator of water transport in the colon. These results indicate that gut microbiota play a critical role in the generation of free CA in the gut lumen.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3