Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids

Author:

den Besten Gijs12,Lange Katja32,Havinga Rick1,van Dijk Theo H.4,Gerding Albert4,van Eunen Karen12,Müller Michael32,Groen Albert K.142,Hooiveld Guido J.32,Bakker Barbara M.12,Reijngoud Dirk-Jan142

Affiliation:

1. Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;

2. Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands

3. Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands; and

4. Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;

Abstract

Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-13C]acetate, [2-13C]propionate, or [2,4-13C2]butyrate directly in the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion, pointing to microbial cross-feeding, was high between acetate and butyrate, low between butyrate and propionate, and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8 and 0.7%, respectively) and butyrate (2.7 and 0.9%, respectively) as substrates, but low or absent from propionate (0.6 and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately eightfold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6-h infusion period. Altogether, gut-derived acetate, propionate, and butyrate play important roles as substrates for glucose, cholesterol, and lipid metabolism.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3