Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers

Author:

Ghosh Sudip K.,Pandolfino John E.,Zhang Qing,Jarosz Andrew,Shah Nimeesh,Kahrilas Peter J.

Abstract

The vastly enhanced spatial resolution of high-resolution manometry (HRM) makes it possible to simultaneous monitor contractile activity over the entire length of the esophagus. The aim of this investigation was to define the essential features of esophageal peristalsis in novel HRM paradigms and establish their normative values. Ten 5-ml water swallows were recorded in each of 75 asymptomatic controls with a solid-state manometric assembly incorporating 36 circumferential sensors spaced at 1-cm intervals positioned to record from the hypopharynx to the stomach. The data set was then subjected to intensive computational analysis to distill out the essential characteristics of normal peristalsis. Esophageal peristalsis was conceptualized in terms of a proximal contraction, a distal contraction, and a transition zone separating the two. Each contractile segment was quantified in length and then normalized among subjects to summarize focal fluctuation of contractile amplitude and propagation velocity. Furthermore, the temporal and spatial characteristics of the transition zone separating the proximal and distal contraction were quantified. For each paradigm, graphics were developed, establishing median values along with the 5th to 95th percentile range of observed variation. In addition, the synchronization between peristalsis and esophagogastric junction relaxation was analyzed using a novel concept of the outflow permissive pressure gradient. We performed a detailed analysis of esophageal peristalsis aimed at quantifying its essential features and, in so doing, devised new paradigms for the quantification of peristaltic function that will hopefully optimize the utility of HRM in clinical and investigative studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference16 articles.

1. Clouse RE, Parks TR, and Haroian LR. Novel solid-state technology simplifies high-resolution: manometry (HRM) for clinical use. Gastroenterology 126, Suppl 2: A638–A638, 2004.

2. Manometric patterns using esophageal body and lower sphincter characteristics

3. Topography of the esophageal peristaltic pressure wave

4. Application of Topographical Methods To Clinical Esophageal Manometry

5. Characteristics of the propagating pressure wave in the esophagus

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3