Mammalian colonocytes possess a carrier-mediated mechanism for uptake of vitamin B3 (niacin): studies utilizing human and mouse colonic preparations

Author:

Kumar Jeyan S.12,Subramanian Veedamali S.12,Kapadia Rubina12,Kashyap Moti L.2,Said Hamid M.12

Affiliation:

1. Departments of Medicine, Physiology and Biophysics, University of California, Irvine;

2. Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California

Abstract

Niacin (vitamin B3; nicotinic acid) plays an important role in maintaining redox state of cells and is obtained from endogenous and exogenous sources. The latter source has generally been assumed to be the dietary niacin, but another exogenous source that has been ignored is the niacin that is produced by the normal microflora of the large intestine. For this source of niacin to be bioavailable, it needs to be absorbed, but little is known about the ability of the large intestine to absorb niacin and the mechanism involved. Here we addressed these issues using the nontransformed human colonic epithelial NCM460 cells, native human colonic apical membrane vesicles (AMV) isolated from organ donors, and mouse colonic loops in vivo as models. Uptake of3H-nicotinic acid by NCM460 cells was: 1) acidic pH (but not Na+) dependent; 2) saturable (apparent Km= 2.5 ± 0.8 μM); 3) inhibited by unlabeled nicotinic acid, nicotinamide, and probenecid; 4) neither affected by other bacterially produced monocarboxylates, monocarboxylate transport inhibitor, or by substrates of the human organic anion transporter-10; 5) affected by modulators of the intracellular protein tyrosine kinase- and Ca2+-calmodulin-regulatory pathways; and 6) adaptively regulated by extracellular nicotinate level. Uptake of nicotinic acid by human colonic AMV in vitro and by mouse colonic loops in vivo was also carrier mediated. These findings report, for the first time, that mammalian colonocytes possess a high-affinity carrier-mediated mechanism for nicotinate uptake and show that the process is affected by intracellular and extracellular factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3