Fibroblast growth factor 19 secretion and function in perinatal development

Author:

Vonderohe Caitlin12ORCID,Guthrie Gregory12,Burrin Douglas G.12ORCID

Affiliation:

1. United States Department of Agriculture-Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas, United States

2. Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States

Abstract

Limited work has focused on fibroblast growth factor-19 (FGF19) secretion and function in the perinatal period. FGF19 is a potent growth factor that coordinates development of the brain, eye, inner ear, and skeletal system in the embryo, but after birth, FGF19 transitions to be an endocrine regulator of the classic pathway of hepatic bile acid synthesis. FGF19 has emerged as a mediator of metabolism and bile acid synthesis in aged animals and adults in the context of liver disease and metabolic dysfunction. FGF19 has also been shown to have systemic insulin-sensitizing and skeletal muscle hypertrophic effects when induced or supplemented at supraphysiological levels in adult rodent models. These effects could be beneficial to improve growth and nutritional outcomes in preterm infants, which are metabolically resistant to the anabolic effects of enteral nutrition. Existing clinical data on FGF19 secretion and function in the perinatal period in term and preterm infants has been equivocal. Studies in pigs show that FGF19 expression and secretion are upregulated with gestational age and point to molecular and endocrine factors that may be involved. Work focused on FGF19 in pediatric diseases suggests that augmentation of FGF19 secretion by activation of gut FXR signaling is associated with benefits in diseases such as short bowel syndrome, parenteral nutrition-associated liver disease, and biliary atresia. Future work should focus on characterization of FGF19 secretion and the mechanism underpinning the transition of FGF19 function as an embryological growth factor to metabolic and bile acid regulator.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

USDA | Agricultural Research Service

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3