Visual Experience Is Necessary for Maintenance But Not Development of Receptive Fields in Superior Colliculus

Author:

Carrasco M. M.,Razak K. A.,Pallas S. L.

Abstract

Sensory deprivation is thought to have an adverse effect on visual development and to prolong the critical period for plasticity. Once the animal reaches adulthood, however, synaptic connectivity is understood to be largely stable. We reported previously that N-methyl-d-aspartate (NMDA) receptor blockade in the superior colliculus of the Syrian hamster prevents refinement of receptive fields (RFs) in normal or compressed retinotopic projections, resulting in target neurons with enlarged RFs but normal stimulus tuning. Here we asked whether visually driven activity is necessary for refinement or maintenance of retinotopic maps or if spontaneous activity is sufficient. Animals were deprived of light either in adulthood only or from birth until the time of recording. We found that dark rearing from birth to 2 mo of age had no effect on the timing and extent of RF refinement as assessed with single unit extracellular recordings. Visual deprivation in adulthood also had no effect. Continuous dark rearing from birth into adulthood, however, resulted in a progressive loss of refinement, resulting in enlarged, asymmetric receptive fields and altered surround suppression in adulthood. Thus unlike in visual cortex, early visually driven activity is not necessary for refinement of receptive fields during development, but is required to maintain refined visual projections in adulthood. Because the map can refine normally in the dark, these results argue against a deprivation-induced delay in critical period closure, and suggest instead that early visual deprivation leaves target neurons more vulnerable to deprivation that continues after refinement.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3