Cross-correlation analysis of cuneothalamic interactions in the rat somatosensory system: influence of receptive field topography and comparisons with thalamocortical interactions

Author:

Alloway K. D.1,Wallace M. B.1,Johnson M. J.1

Affiliation:

1. Department of Neuroscience and Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.

Abstract

1. We simultaneously recorded neuronal responses to cutaneous stimulation from matched somatotopic representations in the nucleus cuneatus and ventrobasal complex of intact, halothane-anesthetized rats. A total of 95 cuneate and 86 thalamic neurons representing hairy skin on the forelimb were activated by hair movements produced by air jets at multiple skin sites. Mean responsiveness was higher among neurons in nucleus cuneatus (34.4 spikes per stimulus) than in thalamus (23.7 spikes per stimulus), a result that was consistent with the greater proportion of “sustained” responses recorded in nucleus cuneatus (80%) than in the thalamus (62%). 2. Cross-correlation analysis of 166 pairs of cuneate and thalamic neurons showed that 56 neuron pairs displayed time-locked correlations in activity that were characterized primarily by excitatory interactions (44 pairs) or a combination of excitatory and inhibitory interactions (10 pairs). Unilateral interactions in the cuneothalamic direction (31 pairs) and reverse direction (11 pairs) were observed, as well as multiphasic interactions in both directions (14 pairs). Most excitatory interactions involved intervals of 1–7 ms between successive cuneate and thalamic discharges, whereas most inhibitory influences involved intervals > 7 ms. Connection strength, defined by the ratio of time-linked interactions to the number of cuneate discharges, varied widely among neuron pairs but was largest for interactions involving interspike intervals of < or = 15 ms. 3. The relationship between connection strength and receptive field topography was analyzed in 103 cuneate-thalamic neuron pairs. The region of skin shared by both neurons varied substantially among neuron pairs and the probability of detecting interactions increased proportionately with larger amounts of receptive field overlap. Neuron pairs with moderate (25–50%) amounts of receptive field overlap had connection strengths 3–4 times greater than neuron pairs with minimal (0–25%) overlap. Connection strength was essentially identical, however, for neuron pairs with moderate or large (> 50%) amounts of overlap. 4. Cuneate-thalamic neuron pairs displaying functional connections were usually tested at multiple peripheral sites, but only 37% (18 of 49) of these neuron pairs displayed interactions at more than one stimulation site. Stimulation at different sites altered the timing of interactions in seven neuron pairs, including three that showed timing shifts across time zero in the cross-correlation histogram. In neuron pairs displaying interactions at multiple sites, connection strengths for 67% of the cases were strongest when stimulation was delivered within the region of receptive field overlap.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3