Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle

Author:

Ai Hua12,Ihlemann Jacob1,Hellsten Ylva3,Lauritzen Hans P. M. M.1,Hardie D. Grahame4,Galbo Henrik1,Ploug Thorkil1

Affiliation:

1. Copenhagen Muscle Research Centre, Department of Medical Physiology, Panum Institute, DK-2200, Copenhagen, and

2. Institute of Sports Medicine, Third Hospital, Beijing University, 100083 Beijing, China; and

3. Department of Human Physiology, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark;

4. Division of Molecular Physiology, School of Life Sciences, Wellcome Trust Biocentre, Dundee University, Dundee DD1 5EH, Scotland, United Kingdom

Abstract

AMP-activated protein kinase (AMPK) may mediate the stimulatory effect of contraction and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on glucose transport in skeletal muscle. In muscles with different fiber type composition from fasted rats, AICAR increased 2-deoxyglucose transport and total AMPK activity approximately twofold in epitrochlearis (EPI), less in flexor digitorum brevis, and not at all in soleus muscles. Contraction increased both transport and AMPK activity more than AICAR did. In EPI muscles, the effects of AICAR and contractions on glucose transport were partially additive despite a lower AMPK activity with AICAR compared with contraction alone. In EPI from fed rats, glucose transport responses were smaller than what was seen in fasted rats, and AICAR did not increase transport despite an increase in AMPK activity. AICAR and contraction activated both α1- and α2-isoforms of AMPK. Expression of both isoforms varied with fiber types, and α2 was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose transport.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3