Pancreatic beta-cell function and glucose metabolism in human segmental pancreas and kidney transplantation

Author:

Christiansen E.1,Andersen H. B.1,Rasmussen K.1,Christensen N. J.1,Olgaard K.1,Kirkegaard P.1,Tronier B.1,Volund A.1,Damsbo P.1,Burcharth F.1,et al.1

Affiliation:

1. Department of Internal Medicine, Herlev Hospital, University of Copenhagen, Denmark.

Abstract

beta-Cell function and glucose metabolism were studied in eight insulin-dependent diabetic recipients of combined segmental pancreas and kidney transplant with peripheral insulin delivery (Px), in eight nondiabetic kidney-transplant individuals (Kx), and in eight normal subjects (Ns) after three consecutive mixed meals. All subjects had normal fasting plasma glucose, but increased basal levels of C-peptide were demonstrated in the transplant groups (P < 0.05 relative to Ns). Postprandial hyperglycemia was increased 14% in Kx and 32% in Px (P < 0.05), whereas compared with Ns postprandial C-peptide levels were increased three- and twofold, respectively, in Kx and Px (P < 0.05). Compared with Ns basal insulin secretion rate (combined model) was increased 2-fold in Kx and 1.4-fold in Px (P < 0.05). Maximal insulin secretion rate was reduced 25% in Px compared with Kx (P < 0.05) but not different from that of Ns (P NS). Also, maximal insulin secretion rate occurred later in Px than in controls (Tmax: Px 50 min, Kx 30 min, and Ns 32 min; P < 0.05). The total integrated insulin secretion was increased 1.4-fold in Px compared with Ns (P < 0.05) but decreased 1.4-fold compared with Kx (P < 0.05). Fasting and postprandial proinsulin-to-C-peptide molar ratios were inappropriately increased in Px compared with Kx and Ns. Basal hepatic glucose production was increased 43% in Px and 33% in Kx compared with Ns (P < 0.05). Postprandial total systemic glucose appearance was similar in all three groups, whereas peripheral glucose disposal was 15% reduced in Px (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3