Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4

Author:

Camargo Thaís Furtado1,Zanesco Ariane Maria2,Pacher Kayo Augusto Salandin1,Andrade Thiago Antonio Moretti1,Alves Armindo Antonio3,do Amaral Maria Esméria Corezola1

Affiliation:

1. Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil

2. College of Biomedicine, Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil

3. Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil

Abstract

Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo ( n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.

Funder

Herminio Ometto Fundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3