Programming and regulation of metabolic homeostasis

Author:

Wilson David F.1

Affiliation:

1. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Evidence is presented that the rate and equilibrium constants in mitochondrial oxidative phosphorylation set and maintain metabolic homeostasis in eukaryotic cells. These internal constants determine the energy state ([ATP]/[ADP][Pi]), and the energy state maintains homeostasis through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The energy state is maintained with high precision (to ∼1 part in 1010), and the control system can respond to transient changes in energy demand (ATP utilization) of more than 100 times the resting rate. Epigenetic and environmental factors are able to “fine-tune” the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust across-platform control of metabolism, which is essential to cellular differentiation and the evolution of complex organisms. A model of oxidative phosphorylation is presented, for which the steady-state rate expression has been derived and computer programmed. The behavior of oxidative phosphorylation predicted by the model is shown to fit the experimental data available for isolated mitochondria as well as for cells and tissues. This includes measurements from several different mammalian tissues as well as from insect flight muscle and plants. The respiratory chain and oxidative phosphorylation is remarkably similar for all higher plants and animals. This is consistent with the efficient synthesis of ATP and precise control of metabolic homeostasis provided by oxidative phosphorylation being a key to cellular differentiation and the evolution of structures with specialized function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3