Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan

Author:

Bracewell R. M.1,Mazzoni P.1,Barash S.1,Andersen R. A.1

Affiliation:

1. Department of Brain and Cognitive Sciences, Massachusetts Institute ofTechnology, Cambridge 02139, USA.

Abstract

1. In the companion paper we reported that the predominant signal of the population of neurons in the lateral intraparietal area (area LIP) of the monkey's posterior parietal cortex (PPC) encode the next intended saccadic eye movement during the delay period of a memory-saccade task. This result predicts that, should be monkey change his intention of what the next saccade will be, LIP activity should change accordingly to reflect the new plan. We tested this prediction by training monkeys to change their saccadic plan on command and recording the activity of LIP neurons across plan changes. 2. We trained rhesus monkeys (Macaca mulatta) to maintain fixation on a light spot as long as this spot remained on. During this period we briefly presented one, two, or three peripheral visual stimuli in sequence, each followed by a delay (memory period, M). After the final delay the fixation spot was extinguished, and the monkey had to quickly make a saccade to the location of the last target to have appeared. The monkey could not predict which stimuli, nor how many, would appear on each trial. He thus had to plan a saccade to each stimulus as it appeared and change his saccade plan whenever a stimulus appeared at a different location. 3. We recorded the M period activity of 81 area LIP neurons (from 3 hemispheres of 2 monkeys) in this task. We predicted that, if a neuron's activity reflected the monkey's planned saccade, its activity should be high while the monkey planned a saccade in the neuron's motor field (MF), and low while the planned saccade was in the opposite direction. The activity of most of the neurons in our sample changed in accordance with our hypothesis as the monkey's planned saccade changed. 4. In one condition the monkey was instructed by visual stimuli to change his plan from a saccade in the neuron's preferred direction to a saccade planned in the opposite direction. In this condition activity decreased significantly (P < 0.05) in 65 (80%) of 81 neurons tested. These neurons' activity changed to reflect the new saccade plan even though the cue for this change was not presented in their RF. 5. As a control we randomly interleaved, among trials requiring a plan change, trials in which the monkey had to formulate two consecutive plans to make a saccade in the neuron's preferred direction. The activity remained unchanged (P < 0.05) in 22 of 31 neurons tested (79%), indicating that the neurons continued to encode the same saccade plan. 6. In a variant of the task, the cue to the location of the required saccade was either a light spot or a noise burst from a loudspeaker. Of 22 neurons tested in this task, 16 (73%) showed activity changes consistent with plan changes cued by visual or auditory stimuli. 7. Alterations in the monkey's intentions, even in the absence of overt behavior, are manifested in altered LIP activity. These activity changes could be induced whether visual or auditory cues were used to indicate the required plan changes. Most LIP neurons thus do not encode only the locations of visual stimuli, but also the intention to direct gaze to specific locations, independently of whether a gaze shift actually occurs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3