Representation and integration of multiple sensory inputs in primate superior colliculus

Author:

Wallace M. T.1,Wilkinson L. K.1,Stein B. E.1

Affiliation:

1. Department of Neurobiology and Anatomy, Bowman Gray School ofMedicine/Wake Forest University, Winston-Salem, North Carolina 27157,USA.

Abstract

1. The properties of visual-, auditory-, and somatosensory-responsive neurons, as well as of neurons responsive to multiple sensory cues (i.e., multisensory), were examined in the superior colliculus of the rhesus monkey. Although superficial layer neurons responded exclusively to visual stimuli and visual inputs predominated in deeper layers, there was also a rich nonvisual and multisensory representation in the superior colliculus. More than a quarter (27.8%) of the deep layer population responded to stimuli from more than a single sensory modality. In contrast, 37% responded only to visual cues, 17.6% to auditory cues, and 17.6% to somatosensory cues. Unimodal- and multisensory-responsive neurons were clustered by modality. Each of these modalities was represented in map-like fashion, and the different representations were in alignment with one another. 2. Most deep layer visually responsive neurons were binocular and exhibited poor selectivity for such stimulus characteristics as orientation, velocity, and direction of movement. Similarly, most auditory-responsive neurons had contralateral receptive fields and were binaural, but had little frequency selectivity and preferred complex, broad-band sounds. Somatosensory-responsive neurons were overwhelmingly contralateral, high velocity, and rapidly adapting. Only rarely did somatosensory-responsive neurons require distortion of subcutaneous tissue for activation. 3. The spatial congruence among the different receptive fields of multisensory neurons was a critical feature underlying their ability to synthesize cross-modal information. 4. Combinations of stimuli could have very different consequences in the same neuron, depending on their temporal and spatial relationships. Generally, multisensory interactions were evident when pairs of stimuli were separated from one another by < 500 ms, and the products of these interactions far exceeded the sum of their unimodal components. Whether the combination of stimuli produced response enhancement, response depression, or no interaction depended on the location of the stimuli relative to one another and to their respective receptive fields. Maximal response enhancements were observed when stimuli originated from similar locations in space (as when derived from the same event) because they fell within the excitatory receptive fields of the same multisensory neurons. If, however, the stimuli were spatially disparate such that one fell beyond the excitatory borders of its receptive field, either no interaction was produced or this stimulus depressed the effectiveness of the other. Furthermore, maximal response interactions were seen with the pairing of weakly effective unimodal stimuli. As the individual unimodal stimuli became increasingly effective, the levels of response enhancement to stimulus combinations declined, a principle referred to as inverse effectiveness. Many of the integrative principles seen here in the primate superior colliculus are strikingly similar to those observed in the cat. These observations indicate that a set of common principles of multisensory integration is adaptable in widely divergent species living in very different ecological situations. 5. Surprisingly, a few multisensory neurons had individual receptive fields that were not in register with one another. This has not been noted in multisensory neurons of other species, and these "anomalous" receptive fields could present a daunting problem: stimuli originating from the same general location in space cannot simultaneously fall within their respective receptive fields, a stimulus pairing that may result in response depression. Conversely, stimuli that originate from separate events and disparate locations (and fall within their receptive fields) may result in response enhancement. However, the spatial principle of multisensory integration did not apply in these cases. (ABSTRACT TRUNCATED)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3