Analysis of Between-Trial and Within-Trial Neural Spiking Dynamics

Author:

Czanner Gabriela,Eden Uri T.,Wirth Sylvia,Yanike Marianna,Suzuki Wendy A.,Brown Emery N.

Abstract

Recording single-neuron activity from a specific brain region across multiple trials in response to the same stimulus or execution of the same behavioral task is a common neurophysiology protocol. The raster plots of the spike trains often show strong between-trial and within-trial dynamics, yet the standard analysis of these data with the peristimulus time histogram (PSTH) and ANOVA do not consider between-trial dynamics. By itself, the PSTH does not provide a framework for statistical inference. We present a state-space generalized linear model (SS-GLM) to formulate a point process representation of between-trial and within-trial neural spiking dynamics. Our model has the PSTH as a special case. We provide a framework for model estimation, model selection, goodness-of-fit analysis, and inference. In an analysis of hippocampal neural activity recorded from a monkey performing a location-scene association task, we demonstrate how the SS-GLM may be used to answer frequently posed neurophysiological questions including, What is the nature of the between-trial and within-trial task-specific modulation of the neural spiking activity? How can we characterize learning-related neural dynamics? What are the timescales and characteristics of the neuron's biophysical properties? Our results demonstrate that the SS-GLM is a more informative tool than the PSTH and ANOVA for analysis of multiple trial neural responses and that it provides a quantitative characterization of the between-trial and withintrial neural dynamics readily visible in raster plots, as well as the less apparent fast (1–10 ms), intermediate (11–20 ms), and longer (>20 ms) timescale features of the neuron's biophysical properties.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3