Modulation of synaptic transmission at Ia-afferent connections on motoneurons during high-frequency afferent stimulation: dependence on motor task

Author:

Koerber H. R.1,Mendell L. M.1

Affiliation:

1. Department of Neurobiology and Behavior, State University of New York,Stony Brook 11794.

Abstract

1. Monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in medial gastrocnemius motoneurons by maximal group Ia stimulation of the heteronymous lateral gastrocnemius-soleus nerve in anesthetized cats. Three different patterns of high-frequency stimulation were delivered to the nerve, and the EPSPs were averaged in register (1, 2, . . ., n) for each. 2. One pattern ("Burst") consisted of 32 shocks delivered every 2 s at an interstimulus interval of 6 ms (167 Hz). The second pattern ("Stepping") was a frequency-modulated burst of 52 shocks derived from a recording of a spindle during stepping and was delivered every 2 s. The third pattern ("Paw Shake") was from an extensor spindle afferent recorded during rapid paw shake and was delivered in groups of six bursts with an interburst interval of 75 ms and a 3-s pause between groups of six bursts. The EPSPs in each burst were averaged in register (1, 2, . . ., n) so that the relative amplitude of each EPSP in the burst could be ascertained. The EPSP produced by low-frequency stimulation of the nerve (18 Hz) was also recorded for each motoneuron. 3. The initial EPSP in most bursts was larger than the EPSP measured as a result of low-frequency stimulation. This potentiation, defined as the ratio of the amplitude of the initial EPSP of the response to that of the low-frequency control, was found to vary systematically as a function of amplitude of the control EPSP as well as the stimulus paradigm used.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3