Alveolar macrophages from systemic sclerosis patients: evidence for IL-4-mediated phenotype changes

Author:

Hamilton Raymond F.,Parsley Ed,Holian Andrij

Abstract

The mechanism of chronic lung inflammation leading to lung fibrosis is unknown and does not have a characteristic inflammatory macrophage phenotype. This study was undertaken to determine whether a change in macrophage phenotype could account for chronic lung inflammation. In this study, human alveolar macrophages (AM) from subjects with systemic sclerosis (SSc) were obtained from bronchoalveolar lavage (BAL) and characterized on the basis of function (response to LPS), phenotype, and relative cell-surface B7 expression. AM from the subjects' disease-involved and noninvolved lung lobes were compared with each other and to AM from normal volunteer BAL. AM from involved SSc lobes produced significantly more interleukin (IL)-1β and PGE2than AM from uninvolved lobes in response to LPS, but there was no spontaneous production of either mediator. The activator AM phenotype designated by RFD1+ surface epitope was significantly elevated in SSc BAL samples compared with normal BAL, although there were no differences comparing involved vs. noninvolved lobes within SSc subjects. The major histocompatibility complex II costimulatory molecule B7.2 was also significantly elevated in SSc AM compared with normal AM, again with no differences between involved and noninvolved lobes. In an attempt to determine environmental influences on AM phenotypes, normal AM were cultured in vitro with IFN-γ, IL-3, IL-4, IL-10, IL-12, or dexamethasone for 6 days. Of the cytokines examined, only IL-4 induced significant increases in both the activator phenotype RFD1+ and B7.2 expression. Taken together, these results indicate that IL-4 could account for proinflammatory AM phenotype changes and B7 surface-marker shifts, as seen in subjects with SSc.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3