Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats

Author:

Wang Wen1,Liu Zhi2,Su Jie3,Chen Wen-Sheng3,Wang Xiao-Wu3,Bai San-Xing3,Zhang Jin-Zhou3,Yu Shi-Qiang3

Affiliation:

1. Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China;

2. Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; and

3. Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China

Abstract

Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3′-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

Funder

National Natural Science Foundation of China (NSFC)

international cooperational projects in Shaanxi Province

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3