High-altitude pulmonary edema: the intercellular network hypothesis

Author:

Richalet Jean-Paul1ORCID,Jeny Florence12,Callard Patrice3,Bernaudin Jean-François13

Affiliation:

1. UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, Bobigny, France

2. Service de Pneumologie, Hôpital Avicenne, HUPSSD, Bobigny, France

3. Faculté de Médecine, Sorbonne-Université, Paris, France

Abstract

The pathophysiology of high-altitude pulmonary edema is currently attributed to exacerbated heterogeneous hypoxic pulmonary vasoconstriction. However, although other cellular mechanisms have been hypothesized, they are still poorly understood. In this review, we focused on cells of the pulmonary acinus, the distal unit for gas exchange, known to be responders to acute hypoxia, notably through many humoral or tissue factors that connect this intercellular network constituting the alveolo-capillary barrier. Hypoxia could drive alveolar edema by: 1) damaging the fluid reabsorption capacity of alveolar epithelial cells, 2) increasing the endothelial and epithelial permeability, especially by alteration of occluding junctions, 3) triggering the inflammation mainly led by alveolar macrophages, 4) increasing interstitial water accumulation by disruption of extracellular matrix architecture and tight junctions, 5) inducing pulmonary vasoconstriction through an orchestrated response of pulmonary arterial endothelial and smooth muscle cells. Hypoxia may also alter the function of fibroblasts and pericytes that contribute to the interconnection of the cells of the alveolar-capillary barrier. Due to its complex intercellular network and delicate pressure gradient equilibrium, the alveolar-capillary barrier is simultaneously affected by acute hypoxia in all its components, leading to rapid accumulation of water in the alveoli.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3