Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood

Author:

Hogmalm Anna1,Bry Maija2,Bry Kristina12

Affiliation:

1. Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

2. The Queen Silvia Children’s Hospital, Gothenburg, Sweden

Abstract

Chorioamnionitis, mechanical ventilation, oxygen therapy, and postnatal infection promote inflammation in the newborn lung. The long-term consequences of pulmonary inflammation during infancy have not been well characterized. The aim of this study was to examine the impact of inflammation during the late saccular to alveolar stages of lung development on lung structure and function in adulthood. To induce IL-1β expression in the pulmonary epithelium of mice with a tetracycline-inducible human IL-1β transgene, doxycycline was administered via intraperitoneal injections to bitransgenic pups and their littermate controls on postnatal days (PN) 0, 0.5, and 1. Lung structure, inflammation, and airway reactivity were studied in adulthood. IL-1β production in early life resulted in increased numbers of macrophages and neutrophils on PN21, but inflammation subsided by PN42. Permanent changes in alveolar structure, i.e., larger alveoli and thicker alveolar walls, were present from PN21 to PN84. Lack of alveolar septation thus persisted after IL-1β production and inflammation had ceased. Early IL-1β production caused goblet cell hyperplasia, enhanced calcium-activated chloride channel 3 (CLCA3) protein expression, and increased airway reactivity in response to methacholine on PN42. Lymphoid follicles were present adjacent to small airways in the lungs of adult bitransgenic mice, and levels of the B cell chemoattractant CXC-motif ligand (CXCL) 13 were elevated in the lungs of bitransgenic mice compared with controls. In conclusion, IL-1β-induced pulmonary inflammation in early life causes a chronic lung disease in adulthood.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3