BMPR2 dysfunction impairs insulin signaling and glucose homeostasis in cardiomyocytes

Author:

Hemnes Anna R.1,Fessel Joshua P.123,Chen Xinping1,Zhu Shijun1,Fortune Niki L.1,Jetter Christopher1,Freeman Michael4,Newman John H.1,West James D.1,Talati Megha H.1

Affiliation:

1. Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee

2. Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee

3. National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland

4. Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee

Abstract

Insulin resistance and right ventricular (RV) dysfunction are associated with lipotoxicity in heritable forms of pulmonary arterial hypertension (PAH), commonly due to mutations in bone morphogenetic protein receptor type 2 (BMPR2). How BMPR2 dysfunction in cardiomyocytes alters glucose metabolism and the response of these cells to insulin are unknown. We hypothesized that BMPR2 mutation in cardiomyocytes alters glucose-supported mitochondrial respiration and impairs cellular responses to insulin, including glucose and lipid uptake. We performed metabolic assays, immunofluorescence and Western analysis, RNA profiling, and radioactive isotope uptake studies in H9c2 cardiomyocyte cell lines with and without patient-derived BMPR2 mutations (mutant cells), with and without insulin. Unlike control cells, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity as indicated by reduced mitochondrial respiration with increased mitochondrial superoxide production. These mutant cells show enhanced baseline phosphorylation of insulin-signaling protein as indicated by increased Akt, AMPK, and acetyl-CoA carboxylase phosphorylation that may negatively influence fatty acid oxidation and enhance lipid uptake, and are insulin insensitive. Furthermore, mutant cells demonstrate an increase in milk fat globule-EGF factor-8 protein (MFGE8), which influences the insulin-signaling pathway by phosphorylating AktSer473 via phosphatidylinositol 3-kinase and mammalian target of rapamycin. In conclusion, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity and fail to respond to glucose. These cells have enhanced baseline insulin-signaling pattern favoring insulin resistance with failure to augment this pattern in response to insulin. BMPR2 mutation possibly blunts glucose uptake and enhances lipid uptake in these cardiomyocytes. The MFGE8-driven signaling pathway may suggest a new mechanism underlying RV lipotoxicity in PAH.

Funder

NHLBI

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3