Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells

Author:

Zhang Ruifeng12,Wu Yingli3,Zhao Meng3,Liu Chuanxu3,Zhou Lin4,Shen Shaoming3,Liao Shihua3,Yang Kun1,Li Qingyun1,Wan Huanying1

Affiliation:

1. Department of 1Respiratory Medicine, Ruijin Hospital, Medical School of Shanghai Jiaotong University, Shanghai

2. Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China

3. Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai; and

4. Department of 4Gastroenterology, Ruijin Hospital, Medical School of Shanghai Jiaotong University, Shanghai;

Abstract

Angiotensin-converting enzyme (ACE) enhances the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which contribute to the pathogenesis of hypoxic pulmonary hypertension (HPH). Previous reports have demonstrated that hypoxia upregulates ACE expression, but the underlying mechanism is unknown. Here, we found that ACE is persistently upregulated in PASMCs on the transcriptional level during hypoxia. Hypoxia-inducible factor 1α (HIF-1α), a key transcription factor activated during hypoxia, was able to upregulate ACE protein expression under normoxia, whereas knockdown of HIF-1α expression in PASMCs inhibited hypoxia-induced ACE upregulation. Furthermore, HIF-1α can bind and transactivate the ACE promoter directly. Therefore, we report that ACE is a novel target of HIF-1α. Recently, a homolog of ACE, ACE2, was reported to counterbalance the function of ACE. In contrast to ACE, we found that ACE2 mRNA and protein levels increased during the early stages of hypoxia and decreased to near-baseline levels at the later stages after HIF-1α accumulation. Thus HIF-1α inhibited ACE2 expression, and the accumulated ANG II catalyzed by ACE is a key mediator in the downregulation of ACE2 by HIF-1α. Moreover, a reduction of ACE2 expression in PASMCs by RNA interference was accompanied by significantly enhanced proliferation and migration during hypoxia. We conclude that ACE is directly regulated by HIF-1α, whereas ACE2 is regulated in a bidirectional way during hypoxia and may play a protective role during the development of HPH. In sum, these findings contribute to the understanding of the pathogenesis of HPH.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3