Inhibition of β-adrenergic-dependent alveolar epithelial clearance by oxidant mechanisms after hemorrhagic shock

Author:

Modelska K.1,Matthay M. A.1,Brown L. A. S.1,Deutch E.1,Lu L. N.1,Pittet J. F.1

Affiliation:

1. Departments of Anesthesia and Medicine and Cardiovascular Research Institute, University of California, San Francisco, California 94143; and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

Endogenous release of catecholamines is an important mechanism that can prevent alveolar flooding after brief but severe hemorrhagic shock. The objective of this study was to determine whether this catecholamine-dependent mechanism upregulates alveolar liquid clearance after prolonged hemorrhagic shock. Rats were hemorrhaged to a mean arterial pressure of 30–35 mmHg for 60 min and then resuscitated with a 4% albumin solution. Alveolar liquid clearance was measured 5 h later as the concentration of protein in the distal air spaces over 1 h after instillation of a 5% albumin solution into one lung. There was no upregulation of alveolar liquid clearance after prolonged hemorrhagic shock and fluid resuscitation despite a significant increase in plasma epinephrine levels. The intravenous or intra-alveolar administration of exogenous catecholamines did not upregulate alveolar liquid clearance. In contrast, catecholamine-mediated upregulation of alveolar liquid clearance was restored either by depletion of neutrophils with vinblastine, by the normalization of the concentration of reduced glutathione in the alveolar epithelial lining fluid by N-acetylcysteine, or by the inhibition of the conversion from xanthine dehydrogenase to xanthine oxidase. These experiments provide the first in vivo evidence that a neutrophil-dependent oxidant injury to the alveolar epithelium prevents the upregulation of alveolar fluid clearance by catecholamines in the absence of a major alteration in paracellular permeability to protein after prolonged hemorrhagic shock.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3