Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients

Author:

Gaggar Amit,Li Yao,Weathington Nathaniel,Winkler Margaret,Kong Michele,Jackson Patricia,Blalock J. E.,Clancy J. P.

Abstract

Matrix metalloproteases (MMPs) are proteolytic enzymes that regulate extracellular matrix turnover and aid in restoring tissue architecture following injury. There is an emerging role for extracellular matrix destruction in the pathogenesis of chronic neutrophilic lung diseases. In this study, we examined the expression and activity profiles of MMPs in lower airway secretions from cystic fibrosis (CF) patients, patients with acute respiratory failure (ARF), and normal controls. A discrete repertoire of MMP isoforms was found in the CF samples, with robust MMP-9 expression compared with normal controls and ARF. CF samples possessed increased levels of active MMP-9, as well as decreased amounts of tissue inhibitor of metalloprotease-1 (TIMP-1), a natural inhibitor of MMP-9. The CF inpatient samples demonstrated fully active MMP-9 activity compared with CF outpatients, ARF, and normal controls. CF samples also demonstrated increased human neutrophil elastase (HNE) levels compared with ARF and normal controls. To examine potential mechanisms for the protease dysregulation seen in the CF clinical samples, in vitro studies demonstrated that HNE could activate pro-MMP-9 and also degrade TIMP-1; this HNE-based activation, however, was not seen with MMP-8. A strong correlation was seen between HNE and MMP-9 activity in CF inpatient samples. Finally, the dysregulated MMP-9 activity seen in CF inpatient sputum samples could be significantly reduced by the use of MMP-9 inhibitors. Collectively, these findings further emphasize the proposed protease/antiprotease imbalance in chronic neutrophilic lung disease, providing a potential mechanism contributing to this proteolytic dysregulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3