Significance of conductances in Hodgkin-Huxley models

Author:

Foster W. R.1,Ungar L. H.1,Schwaber J. S.1

Affiliation:

1. Neural Computation Program, Dupont Experimental Station, Wilmington, Delaware 19880-0323.

Abstract

1. We explore the roles of conductances in Hodgkin-Huxley (HH) models using a method that allows the explicit linking of HH model input-output behavior to parameter values for maximal conductances, voltage shifts, and time constants. The procedure can be used to identify not only the parameter values most critical to supporting a neuronal activity pattern of interest but also the relationships between parameters which may be required, e.g., limited ranges of relative magnitudes. 2. The method is the repeated use of stochastic search to find hundreds or even thousands of different sets of model parameter values that allow a HH model to produce a desired behavior, such as current-frequency transduction, to within a desired tolerance, e.g., frequency match to within 10 Hz. Graphical or other analysis may then be performed to reveal the shape and boundaries of the parameter solution regions that support the desired behavior. 3. The shape of these parameter regions can reveal parameter values and relationships essential to the behavior. For instance, graphical display may reveal covariances between maximal conductance values, or a much wider range of variation in some maximal conductance values than in others. 4. We demonstrate the use of these techniques with simple, representative HH models, primarily that of Connor et al. for crustacean walking leg axons, but also some extensions of the results are explored using the more complex model of McCormick and Huguenard for thalamocortical relay neurons. Both models are single compartment. Behaviors studied include current-to-frequency transduction, the time delay to first action potential in response to current steps, and the timing of action potential occurrences in response to both square-wave current injection and the injection of currents derived from in vitro records of excitatory postsynaptic currents. 5. Using these simple models, we find that relatively general behaviors such as current-frequency (I/F) curves may be supported by very broad, but bounded parameter solution regions, with the shape of the solution regions revealing the relative importance of the maximal conductances of a model in creating the behavior. Furthermore, we find that a focus on increasingly specific behaviors, such as I/F behavior, defined by tolerances of only a few hertz combined with strict requirements for action potential height, inevitably leads to increasingly narrow, and eventually nonphysiologically narrow, regions of acceptable parameter values. 6. We use the Connor et al. model to reproduce the in vitro action potential timing responses of a rat brain stem neuron to various stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3