Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures

Author:

Baranyi A.1,Szente M. B.1,Woody C. D.1

Affiliation:

1. Department of Comparative Physiology, Attila Jozsef University,Szeged, Hungary.

Abstract

1. Electrical properties of four functional classes [inactivating bursting (ib), noninactivating bursting (nib), fast spiking (fsp), and regular spiking (rsp)] of neurons in the motor cortex of conscious cats were studied with the use of intracellular voltage recording and single-electrode voltage-clamp (SEVC) techniques. Evaluations were made of action potentials and afterpotentials, current-voltage (I-V) relationships, and passive cable properties. Values of membrane potential (Vm), input resistance (RN), membrane time constant (T0), and firing threshold (T50) were also measured. The data were used to extend the electrophysiological classifications of neurons described in the companion paper. 2. Average values of Vm (from -63 to -66 mV), action-potential amplitudes (from 72 to 77 mV), and firing threshold (-54 mV) were not statistically different in different types of neurons. However, the magnitude of intracellularly injected depolarizing current required to induce spike discharge at 50% probability varied significantly (from 0.6 to 1.1 nA) among cell types. The mean RN and T0 measured at Vm varied between 8.3 and 19.8 M omega, and 7.2 and 15.1 ms, respectively, in the cell classes. 3. Action potentials were overshooting. Their mean duration at half amplitude varied from 0.25 to 0.73 ms among different cell types. Three types of action-potential configurations were distinguished. Type I action potentials found in nib and rsp neurons were relatively fast and had a depolarizing afterpotential (DAP) as well as fast and slow after hyperpolarizations (fAHPs, sAHPs). Type II action potentials found in ib and rsp cells had relatively slow rise and decay phases, DAPs, and sAHPs. Their fAHPs were small or absent. Type III action potentials were found exclusively in fsp cells, had very short durations, prominent fAHPs, but no sAHPs. 4. Steady-state I-V relationships were determined by measuring voltage responses to 0.2- to 1.0-nA hyperpolarizing, rectangular current pulses at different membrane potentials. Both RN and T0 exhibited nonlinear behavior over wide ranges of membrane potential; however, between -65 and -75 mV, the I-V relationships varied little, and they appeared constant in most cells. The steady-state values of RN increased with decreasing, and decreased with increasing the membrane potential in all but fsp cells. The I-V relationships were virtually linear in fsp neurons. 5. Transient I-V relationships were studied by measuring voltage responses to depolarizing and hyperpolarizing, rectangular current pulses of increasing amplitude from a preset membrane potential of -70 mV.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3