Human Midbrain Sensitivity to Cognitive Feedback and Uncertainty During Classification Learning

Author:

Aron A. R.,Shohamy D.,Clark J.,Myers C.,Gluck M. A.,Poldrack R. A.

Abstract

Mesencephalic dopaminergic system (MDS) neurons may participate in learning by providing a prediction error signal to their targets, which include ventral striatal, orbital, and medial frontal regions, as well as by showing sensitivity to the degree of uncertainty associated with individual stimuli. We investigated the mechanisms of probabilistic classification learning in humans using functional magnetic resonance imaging to examine the effects of feedback and uncertainty. The design was optimized for separating neural responses to stimulus, delay, and negative and positive feedback components. Compared with fixation, stimulus and feedback activated brain regions consistent with the MDS, whereas the delay period did not. Midbrain activity was significantly different for negative versus positive feedback (consistent with coding of the “prediction error”) and was reliably correlated with the degree of uncertainty as well as with activity in MDS target regions. Purely cognitive feedback apparently engages the same regions as rewarding stimuli, consistent with a broader characterization of this network.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3