Molecular identity, ontogeny, and cAMP modulation of the hyperpolarization-activated current in vestibular ganglion neurons

Author:

Almanza Angélica12,Luis Enoch1,Mercado Francisco12,Vega Rosario1,Soto Enrique1

Affiliation:

1. Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico; and

2. Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz,” Mexico City, Mexico

Abstract

Properties, developmental regulation, and cAMP modulation of the hyperpolarization-activated current ( Ih) were investigated by the whole cell patch-clamp technique in vestibular ganglion neurons of the rat at two postnatal stages (P7–10 and P25–28). In addition, by RT-PCR and immunohistochemistry the identity and distribution of hyperpolarization-activated and cyclic nucleotide-gated channel (HCN) isoforms that generate Ih were investigated. Ih current density was larger in P25–28 than P7–10 rats, increasing 410% for small cells (<30 pF) and 200% for larger cells (>30 pF). The half-maximum activation voltage ( V1/2) of Ih was −102 mV in P7–10 rats and in P25–28 rats shifted 7 mV toward positive voltages. At both ages, intracellular cAMP increased Ih current density, decreased its activation time constant (τ), and resulted in a rightward shift of V1/2 by 9 mV. Perfusion of 8-BrcAMP increased Ih amplitude and speed up its activation kinetics. Ih was blocked by Cs+, zatebradine, and ZD7288. As expected, these drugs also reduced the voltage sag caused with hyperpolarizing pulses and prevented the postpulse action potential generation without changes in the resting potential. RT-PCR analysis showed that HCN1 and HCN2 subunits were predominantly amplified in vestibular ganglia and end organs and HCN3 and HCN4 to a lesser extent. Immunohistochemistry showed that the four HCN subunits were differentially expressed (HCN1 > HCN2 > HCN3 ≥ HCN4) in ganglion slices and in cultured neurons at both P7–10 and P25–28 stages. Developmental changes shifted V1/2 of Ih closer to the resting membrane potential, increasing its functional role. Modulation of Ih by cAMP-mediated signaling pathway constitutes a potentially relevant control mechanism for the modulation of afferent neuron discharge.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3