Opioid Receptor-Mediated Inhibition of ω-Conotoxin GVIA-Sensitive Calcium Channel Currents in Rat Intracardiac Neurons

Author:

Adams David J.1,Trequattrini Carlo1

Affiliation:

1. Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101; and Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

Adams, David J. and Carlo Trequattrini. Opioid receptor-mediated inhibition of ω-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons. J. Neurophysiol. 79: 753–762, 1998. Modulation of depolarization-activated ionic conductances by opioid receptor agonists was investigated in isolated parasympathetic neurons from neonatal rat intracardiac ganglia by using the whole cell perforated patch clamp technique. Met-enkephalin (10 μM) altered the action potential waveform, reducing the maximum amplitude and slowing the rate of rise and repolarization but the afterhyperpolarization was not appreciably altered. Under voltage clamp, 10 μM Met-enkephalin selectively and reversibly inhibited the peak amplitude of high-voltage–activated Ca2+ channel currents elicited at 0 mV by ∼52% and increased three- to fourfold the time to peak. Met-enkephalin had no effect on the voltage dependence of steady-state inactivation but shifted the voltage dependence of activation to more positive membrane potentials whereby stronger depolarization was required to open Ca2+ channels. Half-maximal inhibition of Ba2+ current ( I Ba) amplitude was obtained with 270 nM Met-enkephalin or Leu-enkephalin. The opioid receptor subtype selective agonists, DAMGO and DADLE, but not DPDPE, inhibited I Ba and were antagonized by the opioid receptor antagonists, naloxone and naltrindole with IC50s of 84 nM and 1 μM, respectively. The κ-opioid receptor agonists, bremazocine and dynorphin A, did not affect Ca2+ channel current amplitude or kinetics. Taken together, these data suggest that enkephalin-induced inhibition of Ca2+ channels in rat intracardiac neurons is mediated primarily by the μ-opioid receptor type. Addition of Met-enkephalin after exposure to 300 nM ω-conotoxin GVIA, which blocked ∼75% of the total Ca2+ channel current, failed to cause a further decrease of the residual current. Met-enkephalin inhibited the ω-conotoxin GVIA-sensitive but not the ω-conotoxin-insensitive I Ba in rat intracardiac neurons. Dialysis of the cell with a GTP-free intracellular solution or preincubation of the neurons in Pertussis toxin (PTX) abolished the attenuation of I Ba by Met-enkephalin, suggesting the involvement of a PTX-sensitive Gprotein in the signal transduction pathway. The activation of μ-opioid receptors and subsequent inhibition of N-type Ca2+ channels in the soma and terminals of postganglionic intracardiac neurons is likely to inhibit the release of ACh and thereby regulate vagal transmission to the mammalian heart.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3