Temporal and spatial characteristics of tonically active neurons of the primate's striatum

Author:

Aosaki T.1,Kimura M.1,Graybiel A. M.1

Affiliation:

1. Department of Brain and Cognitive Sciences, Massachusetts Institute ofTechnology, Cambridge 02139, USA.

Abstract

1. Tonically active neurons (TANs) in the primate striatum develop transient responses to sensory conditioning stimuli during behavioral training in classical conditioning tasks. In this study we examined the temporal characteristics of such TAN responses and mapped the sites of TANs responding to auditory and visual conditioned stimuli in the striatum in macaque monkeys. We further mapped the locations of TANs recorded acutely in the squirrel monkey striatum in relation to the neurochemically distinguished striosome and matrix compartments of the striatum, and made quantitative comparisons between the densities and compartmental distributions of TANs and those of four major types of striatal interneuron identified by histochemical and immunohistochemical staining. 2. We made recordings from 858 TANs at different sites in the striatum in two behaving macaque monkeys at different times during training with auditory (click) and visual (light-emitting diode flash) conditioning stimuli. TANs distributed across large parts of the striatum developed responses to the conditioning stimuli. The responses comprised a decrement of tonic firing (pause) followed by a rebound excitation. Measurements were made of the onsets, offsets, and durations of the pauses of individual TANs and of the interspike intervals (ISIs) of the same cells. 3. The mean duration of the pause responses (268.3 ms) was greater than the mean ISI of the same neurons (181 ms), suggesting that the pause represents an active suppression of TAN firing. The coefficient of variation (CV) for the pause responses was 0.28, compared with a CV of 0.63 for the same cells' ISIs. The population CV for the pauses was 0.16, compared with a population CV of 0.20 for the ISIs. These data, together with temporal analysis of the responses and population histograms, suggest that the pauses became temporally aligned across large parts of the striatum after learning. Analyses of variance (ANOVAs) were carried out to determine whether there were differences in the onset and offset latencies of the pause response or in the durations of the pause responses for TANs at different sites. These analyses suggested that, with rare exceptions, there was no difference in the timing of the TAN responses across large (> 10 mm3) parts of the striatum. 4. Comparisons of TAN responses in different regions of the striatum showed that, for responses to a given modality of conditioned stimulus, there were no significant differences in pause offset times for TANs recorded in the caudate nucleus or putamen, or for TANs recorded in more anterior or more posterior parts of these nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3