Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation

Author:

Amzica F.1,Steriade M.1

Affiliation:

1. Laboratoire de Neurophysiologie, Faculte de Medecine, UniversiteLaval, Quebec, Canada.

Abstract

1. Multisite, extra- and intracellular recordings were carried out in cats under ketamine and xylazine anesthesia to assess the degree of synchrony and time relations among cellular activities in various neocortical fields during a slow (< 1 Hz) oscillation consisting of long-lasting depolarizing and hyperpolarizing phases. 2. Recordings were performed from visual areas 17, 18, 19, and 21, association suprasylvian areas 5 and 7, motor pericruciate areas 4 and 6, as well as some related thalamic territories, such as the lateral geniculate (LG), perigeniculate (PG), and rostral intralaminar nuclei. We used spike analyses (auto- and cross-correlograms) to reveal rhythmicities, time relations and coherence properties, analyses of field potentials recorded through the same microelectrodes as used for unit discharges (auto-and cross-correlation functions and their spectral equivalents), and spike-triggered averages. The results are based on 194 groups of neurons with a total of 591 neurons. Seventeen groups included intracellular recordings of cortical neurons with membrane potentials more negative than -60 mV and overshooting action potentials. 3. The most obvious and frequent signs of neuronal synchrony were found within and between association areas 5 and 7 and 18/19 and 21. Closely located cells or neuronal pools were also "closer" in time. The shortest mean time lag was found between cells within adjacent foci (1-2 mm) of areas 5 and 7 and was 12 +/- 11.2 (SE) ms, with more caudal neurons preceding the rostral ones in 70% of cases. In visual cortical fields, the time lag between areas 18/19 and 21 neurons was 27.6 +/- 36 ms, between areas 17 and 21 was 36.2 +/- 47.8 ms, and between areas 18/19 and 17 was 40 +/- 73 ms. In the majority of cases, neuronal firing in area 21 preceded that in areas 18/19. The longest time lags were found in distant recordings from visual and motor areas, with a mean of 124 +/- 86.8 ms, although in some cell groups the time intervals between neuronal firing in areas 18/19 or 21 and areas 4 or 6 were as short as approximately 20 ms. 4. Similar time relations were found in those instances in which the unit firing of the same cortical neuron was used as reference in spike triggered averages and was related to the field potential recorded from an adjacent area before impaling a neuron and, thereafter, to membrane potential fluctuations after impaling the cell. 5. The PG reticular thalamic neurons reflected the slow cortical oscillation in 75% of multisite recordings.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3