Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey

Author:

Crutcher M. D.1,Alexander G. E.1

Affiliation:

1. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Abstract

1. Movement-related neuronal activity in the supplementary motor area (SMA), primary motor cortex (MC), and putamen was studied in monkeys performing a visuomotor tracking task designed to determine 1) the extent to which neuronal activity in each of these areas represented the direction of visually guided arm movements versus the pattern of muscle activity required to achieve those movements and 2) the relative timing of different types of movement-related activity in these three motor areas. 2. A total of 455 movement-related neurons in the three motor areas were tested with a behavioral paradigm, which dissociated the direction of visually guided elbow movements from the accompanying pattern of muscular activity by the application of opposing and assisting torque loads. The movement-related activity described in this report was collected in the same animals performing the same behavioral paradigm used to study preparatory activity described in the preceding paper. Of the total sample, 87 neurons were located within the arm region of the SMA, 150 within the arm region of the MC, and 218 within the arm region of the putamen. 3. Movement-related cells were classified as “directional” if they showed an increase in discharge rate predominantly or exclusively during movements in one direction and did not have significant static or dynamic load effects. A cell was classified as “muscle-like” if its directional movement-related activity was associated with static and/or dynamic load effects whose pattern was similar to that of flexors or extensors of the forearm. Both directional and muscle-like cells were found in all three motor areas. The largest proportion of directional cells was located in the putamen (52%), with significantly smaller proportions in the SMA (38%) and MC (41%). Conversely, a smaller proportion of muscle-like cells was seen in the putamen (24%) than in the SMA (41%) or MC (36%). 4. The time of onset of movement-related discharge relative to the onset of movement ("lead time") was computed for each cell. On average, SMA neurons discharged significantly earlier (SMA lead times 47 +/- 8 ms, mean +/- SE) than those in MC (23 +/- 6 ms), which in turn were earlier than those in putamen (-33 +/- 6 ms). However, the degree of overlap of the distributions of lead times for the three areas was extensive.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 281 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3