Response Properties of Mechanoreceptors and Nociceptors in Mouse Glabrous Skin: An In Vivo Study

Author:

Cain David M.1,Khasabov Sergey G.1,Simone Donald A.2

Affiliation:

1. Department of Preventive Sciences and

2. Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

The increasing use of transgenic mice for the study of pain mechanisms necessitates comprehensive understanding of the murine somatosensory system. Using an in vivo mouse preparation, we studied response properties of tibial nerve afferent fibers innervating glabrous skin. Recordings were obtained from 225 fibers identified by mechanical stimulation of the skin. Of these, 106 were classed as Aβ mechanoreceptors, 51 as Aδ fibers, and 68 as C fibers. Aβ mechanoreceptors had a mean conduction velocity of 22.2 ± 0.7 (SE) m/s (13.8–40.0 m/s) and a median mechanical threshold of 2.1 mN (0.4–56.6 mN) and were subclassed as rapidly adapting (RA, n = 75) or slowly adapting (SA, n = 31) based on responses to constant force mechanical stimuli. Conduction velocities ranged from 1.4 to 13.6 m/s (mean 7.1 ± 0.6 m/s) for Aδ fibers and 0.21 to 1.3 m/s (0.7 ± 0.1 m/s) for C fibers. Median mechanical thresholds were 10.4 and 24.4 mN for Aδ and C fibers, respectively. Responses of Aδ and C fibers evoked by heat (35–51°C) and by cold (28 to −12°C) stimuli were determined. Mean response thresholds of Aδ fibers were 42.0 ± 3.1°C for heat and 7.6 ± 3.8°C for cold, whereas mean response thresholds of C fibers were 40.3 ± 0.4°C for heat and 10.1 ± 1.9°C for cold. Responses evoked by heat and cold stimuli increased monotonically with stimulus intensity. Although only 12% of tested Aδ fibers were heat sensitive, 50% responded to cold. Only one Aδ nociceptor responded to both heat and cold stimuli. In addition, 40% of Aδ fibers were only mechanosensitive since they responded neither to heat nor to cold stimuli. Thermal stimuli evoked responses from the majority of C fibers: 82% were heat sensitive, while 77% of C fibers were excited by cold, and 68% were excited by both heat and cold stimuli. Only 11% of C fibers were insensitive to heat and/or cold. This in vivo study provides an analysis of mouse primary afferent fibers innervating glabrous skin including new information on encoding of noxious thermal stimuli within the peripheral somatosensory system of the mouse. These results will be useful for future comparative studies with transgenic mice.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3