Somato-Dendritic Morphology Predicts Physiology for Neurons That Contribute to Several Kinds of Limb Movements

Author:

Berkowitz Ari,Yosten Gina L. C.,Ballard R. Mark

Abstract

It has been difficult to predict the behavioral roles of vertebrate CNS neurons based solely on their morphologies, especially for the neurons that control limb movements in adults. We examined the morphologies of spinal interneurons involved in limb movement control, using intracellular recording followed by Neurobiotin injection in the in vivo adult turtle spinal cord preparation. We report here the first description of a class of spinal interneurons whose somato-dendritic morphologies predict their robust activity during multiple forms of ipsilateral and contralateral fictive hindlimb scratching and fictive hindlimb withdrawal. These “transverse interneurons” or T cells have a mediolaterally elongated soma and a simple dendritic tree that is extensive in the transverse plane but restricted rostrocaudally. During fictive scratching, these cells display strong rhythmic modulation with higher peak firing rates than other scratch-activated interneurons. These higher peak firing rates are at least partly caused by T cells having larger phase-locked membrane potential oscillations and narrower action potentials with briefer afterhyperpolarizations than other scratch-activated interneurons. Many T cells have axon terminal arborizations in the ventral horn of the spinal cord hindlimb enlargement. Identification of this morphological and physiological class of spinal interneurons should facilitate further exploration of the mechanisms of hindlimb motor pattern selection and generation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference66 articles.

1. Periodic High-Conductance States in Spinal Neurons during Scratch-Like Network Activity in Adult Turtles

2. Banchi A. La minuta struttura della midolla spinale dei Chelonii (Emys europaea). Arch Ital Anat Embriol 2: 291–307 and Tav. XXVIII–XXXI, 1903.

3. Batschelet E. Circular Statistics in Biology London: Academic Press, 1981.

4. Broadly Tuned Spinal Neurons for Each Form of Fictive Scratching in Spinal Turtles

5. Rhythmicity of Spinal Neurons Activated During Each Form of Fictive Scratching in Spinal Turtles

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3