Local superfusion modifies the inward rectifying potassium conductance of isolated retinal horizontal cells

Author:

Perlman I.1,Knapp A. G.1,Dowling J. E.1

Affiliation:

1. Biological Laboratories, Harvard University, Cambridge, Massachusetts02138.

Abstract

1. Horizontal cells were enzymatically and mechanically dissociated from the white perch (Roccus americana) retina and voltage clamped using patch electrodes. Steady-state current-voltage (I-V) relationships of solitary horizontal cells were determined by changing the membrane potential in a rampwise fashion. 2. The I-V curve of cells bathed in normal Ringer solution exhibited a large conductance increase at negative membrane potentials. This conductance activated near the K+ equilibrium potential, had no clear reversal potential, was enhanced by raising the extracellular concentration of K+, and was suppressed by external Cs+. These properties identify the conductance as the inward (anomalous) rectifier. 3. Continuous superfusion of the cells' local environment with drug-free Ringer reduced the magnitude of the inward rectifier current and shifted its activation point to more negative potentials. This effect developed over approximately 30 s, lasted as long as superfusion continued and was reversible upon cessation of superfusion. 4. Pressure ejection of drug-free Ringer solution onto cells bathed in the identical solution also reduced the magnitude of the inward rectifier current, although the effects were more rapid and more transient than those exerted by superfusion. Pressure ejection had little effect when cells were simultaneously superfused with Ringer, suggesting a common mode of action on the inward rectifier. 5. In the absence of superfusion, pressure ejection of Ringer containing 200 microM L-glutamate had a biphasic effect on membrane conductance. At potentials above -60 mV, glutamate caused a conductance increase with a reversal potential near +10 mV. At potentials below -60 mV, glutamate caused a conductance decrease whose reversal potential could not reliably be determined. The latter effect was similar to the suppression of the inward rectifier by application of Ringer alone, suggesting that it may represent an artifact of pressure ejection rather than a direct effect of glutamate. 6. In support of this interpretation, we found that pressure ejection of glutamate in the presence of external Cs+ (which blocks the inward rectifier) or during local superfusion with Ringer (which prevents attenuation of the inward rectifier by pressure ejection) did not cause a conductance decrease at negative potentials. Under these conditions, glutamate caused primarily a conductance increase with a reversal potential near +10 mV.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Life in Vision;Annual Review of Vision Science;2018-09-15

2. Kir2.4 Surface Expression and Basal Current Are Affected by Heterotrimeric G-Proteins;Journal of Biological Chemistry;2013-03

3. Measurement of concentration-response relationships by concentration-ramp application of agonists;Pfl�gers Archiv European Journal of Physiology;1999-06-15

4. Horizontal. cell dynamics: What are the main factors?;Vision Research;1996-12

5. Nitric oxide and cGMP modulate retinal glutamate receptors;Journal of Neurophysiology;1996-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3