Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges

Author:

Deschenes M.,Paradis M.,Roy J. P.,Steriade M.

Abstract

Intracellular and extracellular recordings were performed in lateral thalamic nuclei (ventroanterior-ventrolateral, ventroposterolateral, centralis, lateralis, and reticularis) of cats under barbiturate anesthesia. Neurons were driven antidromically and/or synaptically by stimulating cortical projection areas and prethalamic afferent pathways. Three neuronal populations were identified on the basis of electrophysiological and anatomical criteria: thalamic relay neurons, local interneurons, and reticularis thalami neurons. At rest, two coexistent rhythms were observed in thalamic neurons. Brief episodes (1-2 s) of membrane-potential oscillations at frequencies of 8-12 Hz appeared with a periodicity of about 10 s. In relay neurons, each episode was characterized by a sequence of hyperpolarizations and burst discharges. These rhythmic episodes of hyperpolarization recurring about every 10 s could be reversed in sign by hyperpolarizing currents or by Cl injection, hence suggesting that they were mainly composed of rhythmic inhibitory postsynaptic potentials (IPSPs). This result also indicated that the slow 0.1-Hz rhythm was imposed on relay neurons by other neuronal pools. Following a complete isolation of the thalamus by cortical and high brain stem lesions, the slow 0.1-Hz rhythm was still present, and it was concluded that this rhythm was generated within the thalamus by inhibitory elements. In thalamic interneurons (identified by electrophysiological criteria) brief episodes (1-2 s) of repetitive depolarizations (8-12 Hz) and burst discharges recurred every 10 s. In the interval, the membrane potential of interneurons slowly hyperpolarized, contrasting with the rhythmic phasic hyperpolarizations observed in relay neurons. Electrophysiological properties shared by most relay neurons included a) afterspike hyperpolarizing potentials of long duration, which were blocked by injections of a Ca chelator; b) a pacemaker potential in the vicinity of the spike trigger level; and c) a low-threshold somatic Ca conductance that underlies burst discharges. As a general rule, prethalamic volleys induced faster rising and shorter lasting EPSPs than cortical volleys. Moreover prethalamic afferent-evoked responses could be associated with production of fast prepotentials, some of which appeared to result from dendritic spiking. It appears that synaptic and intrinsic membrane properties of thalamic neurons allow them to function under two modes: a relay mode and an oscillatory mode; the oscillatory mode being intrinsic to the thalamus and the relay mode being commanded and maintained by cortical and brain stem structures.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 387 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3