Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex

Author:

Nitsche M. A.,Doemkes S.,Karaköse T.,Antal A.,Liebetanz D.,Lang N.,Tergau F.,Paulus W.

Abstract

Transcranial DC stimulation (tDCS) induces stimulation polarity-dependent neuroplastic excitability shifts in the human brain. Because it accomplishes long-lasting effects and its application is simple, it is used increasingly. However, one drawback is its low focality, caused by 1) the large stimulation electrode and 2) the functionally effective reference electrode, which is also situated on the scalp. We aimed to increase the focality of tDCS, which might improve the interpretation of the functional effects of stimulation because it will restrict its effects to more clearly defined cortical areas. Moreover, it will avoid unwanted reversed effects of tDCS under the reference electrode, which is of special importance in clinical settings, when a homogeneous shift of cortical excitability is needed. Because current density (current strength/electrode size) determines the efficacy of tDCS, increased focality should be accomplished by 1) reducing stimulation electrode size, but keeping current density constant; or 2) increasing reference electrode size under constant current strength. We tested these hypotheses for motor cortex tDCS. The results show that reducing the size of the motor cortex DC-stimulation electrode focalized the respective tDCS-induced excitability changes. Increasing the size of the frontopolar reference electrode rendered stimulation over this cortex functionally inefficient, but did not compromise the tDCS-generated motor cortical excitability shifts. Thus tDCS-generated modulations of cortical excitability can be focused by reducing the size of the stimulation electrode and by increasing the size of the reference electrode. For future applications of tDCS, such paradigms may help to achieve more selective tDCS effects.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3