NKT cell modulates NAFLD potentiation of metabolic oxidative stress-induced mesangial cell activation and proximal tubular toxicity

Author:

Alhasson Firas1,Dattaroy Diptadip1,Das Suvarthi1,Chandrashekaran Varun1,Seth Ratanesh Kumar1,Schnellmann Rick G.2,Chatterjee Saurabh1

Affiliation:

1. Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and

2. Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina

Abstract

Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42–54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291–303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1β, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-β, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling and mesangial cell activation, which, in turn, is modulated by intrinsic CD1D-dependent natural killer T cells.

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3