Affiliation:
1. Institut National de la Santé et de la Recherche Médicale U319, Université Paris VII, 75015 Paris, France
Abstract
Regulatory effects of fatty acids on gene expression of medium-chain acyl-CoA dehydrogenase (MCAD), a mitochondrial β-oxidation enzyme, were investigated in rabbit kidney cell lines derived from proximal tubule (RC.SV1), thick ascending limb of Henle's loop (RC.SV2), or collecting duct (RC.SV3). Exposure to long-chain fatty acids led to significant increases (2-fold) in MCAD mRNA abundance in RC.SV1 and RC.SV2 cells; kinetics and dose-response studies established that maximal MCAD gene stimulation was reached 4 h after addition of 50 μM oleate (C18:1) in the culture medium. These effects of fatty acids were totally abolished in the presence of 1 μg/ml actinomycin D, a transcription inhibitor. Staining of cellular lipids revealed that fatty acid-induced gene stimulation could occur in the absence of cellular fatty acid accumulation. Altogether, these data indicate that small changes in cellular fatty acid flux can have direct short-term effects on fatty acid oxidation enzyme gene expression in renal cells, and this might take part in the regulation of cellular fatty acid homeostasis in response to changes in tubular fluid composition.
Publisher
American Physiological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献