Effects of homocysteine on endothelial nitric oxide production

Author:

Zhang Xiaohui1,Li Hong1,Jin Haoli1,Ebin Zachary1,Brodsky Sergey1,Goligorsky Michael S.1

Affiliation:

1. Departments of Medicine and Physiology, State University of New York, Stony Brook, New York 11794-8152

Abstract

Hyperhomocysteinemia (HHCy) is an independent and graded cardiovascular risk factor. HHCy is prevalent in patients with chronic renal failure, contributing to the increased mortality rate. Controversy exists as to the effects of HHCy on nitric oxide (NO) production: it has been shown that HHCy both increases and suppresses it. We addressed this problem by using amperometric electrochemical NO detection with a porphyrinic microelectrode to study responses of endothelial cells incubated with homocysteine (Hcy) to the stimulation with bradykinin, calcium ionophore, or l-arginine. Twenty-four-hour preincubation with Hcy (10, 20, and 50 μM) resulted in a gradual decline in responsiveness of endothelial cells to the above stimuli. Hcy did not affect the expression of endothelial nitric oxide synthase (eNOS), but it stimulated formation of superoxide anions, as judged by fluorescence of dichlorofluorescein, and peroxynitrite, as detected by using immunoprecipitation and immunoblotting of proteins modified by tyrosine nitration. Hcy did not directly affect the ability of recombinant eNOS to generate NO, but oxidation of sulfhydryl groups in eNOS reduced its NO-generating activity. Addition of 5-methyltetrahydrofolate restored NO responses to all agonists tested but affected neither the expression of the enzyme nor formation of nitrotyrosine-modified proteins. In addition, a scavenger of peroxynitrite or a cell-permeant superoxide dismutase mimetic reversed the Hcy-induced suppression of NO production by endothelial cells. In conclusion, electrochemical detection of NO release from cultured endothelial cells demonstrated that concentrations of Hcy >20 μM produce a significant indirect suppression of eNOS activity without any discernible effects on its expression. Folates, superoxide ions, and peroxynitrite scavengers restore the NO-generating activity to eNOS, collectively suggesting that cellular redox state plays an important role in HCy-suppressed NO-generating function of this enzyme.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3