Functional mapping of rbOCT1 and rbOCT2 activity in the S2 segment of rabbit proximal tubule

Author:

Kaewmokul Santi,Chatsudthipong Varanuj,Evans Kristen K.,Dantzler William H.,Wright Stephen H.

Abstract

A strategy was developed to determine the distribution of activity mediated by the organic cation (OC) transporters OCT1 and OCT2 in rabbit renal proximal tubule (RPT). Both transporters displayed similar affinities for tetraethylammonium (TEA; in CHO-K1 cells, TEA concentrations that resulted in half-maximal transport were 19.9 and 34.5 μM for OCT1 and OCT2, respectively). Similarly, some OCs showed little capacity to discriminate between the two processes (IC50 values for ephedrine of 13.6 and 24.2 μM for OCT1 and OCT2, respectively). However, OCT2 had a higher affinity for cimetidine and [2-(4-nitro-2,1,3-benzoxadiazol-7-yl) aminoethyl]trimethylammonium (NBD-TMA; 1.3 and 1.4 μM, respectively) than did OCT1 (97.3 and 108 μM, respectively). Conversely, OCT1 had a higher affinity for tyramine and pindolol than did OCT2 (21.2 and 2.4 vs. 361 and 50 μM, respectively). We designated these as “discriminatory inhibitors” and used them to determine the relative contribution of OCT1 and OCT2 for TEA transport in single S2 segments of rabbit RPT. Cimetidine and NBD-TMA were high-affinity inhibitors of TEA transport in S2 segments (median IC50 values of 12.3 and 1.4 μM, respectively); in comparison, tyramine and pindolol were low-affinity inhibitors (265 and 69.3 μM, respectively). These IC50 values were sufficiently close to those for OCT2 to support the conclusion that TEA transport in the S2 segment of rabbit RPT is dominated by OCT2. However, the profile of inhibition of tyramine (an OCT1-selective substrate) transport in single S2 segments indicated that, despite a comparatively low level of expression, OCT1 can play a dominant role in the uptake of selected OC substrates.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3