Loss of TIMP3 selectively exacerbates diabetic nephropathy

Author:

Basu Ratnadeep12,Lee Jiwon12,Wang Zuocheng23,Patel Vaibhav B.23,Fan Dong12,Das Subhash K.23,Liu George C.4,John Rohan5,Scholey James W.4,Oudit Gavin Y.123,Kassiri Zamaneh12

Affiliation:

1. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada;

2. Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada;

3. Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada;

4. Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and

5. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Abstract

Diabetic nephropathy is the most common cause of end-stage renal disease. Polymorphism in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene, and the ECM-bound inhibitor of matrix metalloproteinases (MMPs), has been linked to diabetic nephropathy in humans. To elucidate the mechanism, we generated double mutant mice in which the TIMP3 gene was deleted in the genetic diabetic Akita mouse background. The aggravation of diabetic injury occurred in the absence of worsening of hypertension or hyperglycemia. In fact, myocardial TIMP3 levels were not affected in Akita hearts, and cardiac diastolic and systolic function remained unchanged in the double mutant mice. However, TIMP3 levels increased in Akita kidneys and deletion of TIMP3 exacerbated the diabetic renal injury in the Akita mouse, characterized by increased albuminuria, mesangial matrix expansion, and kidney hypertrophy. The progression of diabetic renal injury was accompanied by the upregulation of fibrotic and inflammatory markers, increased production of reactive oxygen species and NADPH oxidase activity, and elevated activity of TNF-α-converting enzyme (TACE) in the TIMP3−/−/Akita kidneys. Moreover, while the elevated phospho-Akt (S473 and T308) and phospho-ERK1/2 in the Akita mice was not detected in the TIMP3−/−/Akita kidneys, PKCβ1 (but not PKCα) was markedly elevated in the double mutant kidneys. Our data provide definitive evidence for a critical and selective role of TIMP3 in diabetic renal injury consistent with gene expression findings from human diabetic kidneys.

Publisher

American Physiological Society

Subject

Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3