Dietary fructose enhances angiotensin II-stimulated Na+transport via activation of PKC-α in renal proximal tubules

Author:

Yang Nianxin12,Hong Nancy J.1,Garvin Jeffrey L.1

Affiliation:

1. Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio

2. Biochemistry, Molecular, Cellular and Developmental Biology, University of California, Davis, California

Abstract

Angiotensin II (ANG II) stimulates proximal nephron transport via activation of classical protein kinase C (PKC) isoforms. Acute fructose treatment stimulates PKC and dietary fructose enhances ANG II’s ability to stimulate Na+transport, but the mechanisms are unclear. We hypothesized that dietary fructose enhances ANG II’s ability to stimulate renal proximal tubule Na+reabsorption by augmenting PKC-α activation and increases in intracellular Ca2+. We measured total and isoform-specific PKC activity, basal and ANG II-stimulated oxygen consumption, a surrogate of Na+reabsorption, and intracellular Ca2+in proximal tubules from rats given either 20% fructose in their drinking water (fructose group) or tap water (control group). Total PKC activity was measured by ELISA. PKC-α, PKC-β, and PKC-γ activities were assessed by measuring particulate-to-soluble ratios. Intracelluar Ca2+was measured using fura 2. ANG II stimulated total PKC activity by 53 ± 15% in the fructose group but not in the control group (−15 ± 11%, P < 0.002). ANG II stimulated PKC-α by 0.134 ± 0.026 but not in the control group (−0.002 ± 0.020, P < 0.002). ANG II increased PKC-γ activity by 0.008 ± 0.003 in the fructose group but not in the control group ( P < 0.046). ANG II did not stimulate PKC-β in either group. ANG II increased Na+transport by 454 ± 87 nmol·min−1·mg protein−1in fructose group, and the PKC-α/β inhibitor Gö6976 blocked this increase (−96 ± 205 nmol·min−1·mg protein−1, P < 0.045). ANG II increased intracellular Ca2+by 148 ± 53 nM in the fructose group but only by 43 ± 10 nM in the control group ( P < 0.035). The intracellular Ca2+chelator BAPTA blocked the ANG II-induced increase in Na+transport in the fructose group. We concluded that dietary fructose enhances ANG II’s ability to stimulate renal proximal tubule Na+reabsorption by augmenting PKC-α activation via elevated increases in intacellular Ca2+.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3