Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli

Author:

Banes Amy K.1,Shaw Séan1,Jenkins John1,Redd Heather1,Amiri Farhad1,Pollock David M.1,Marrero Mario B.1

Affiliation:

1. Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500

Abstract

Clinical and animal studies show that treatment with angiotensin-converting enzyme (ACE) inhibitors or ANG II-receptor antagonists slows progression of nephropathy in diabetes, indicating ANG II plays an important role in its development. We previously reported that hyperglycemia augments both ANG II-induced growth and activation of Janus kinase (JAK)2 and signal transducers and activators of transcription (STAT) proteins in cultured rat mesangial cells. Furthermore, we demonstrated that the tyrosine kinase enzyme JAK2 plays a key role in both ANG II- and hyperglycemia-induced growth in these cells. We hypothesized that the ACE inhibitor captopril and the ANG II-receptor antagonist candesartan would hinder hyperglycemic-induced activation of JAK and STAT proteins in rat glomeruli, demonstrating that ANG II plays an important role in the activation of these proteins in vivo. Adult male Sprague-Dawley rats were given either streptozotocin (STZ; 60 mg/kg iv) or vehicle, and glomeruli were isolated 2 wk later. Activation of JAK and STAT proteins was evaluated by Western blot analysis for specific tyrosine phosphorylation. Groups of rats were given captopril (75–85 mg·kg-1·day-1), candesartan (10 mg· kg-1·day-1), or the JAK2 inhibitor AG-490 (5 mg·kg-1·day-1) for the study's duration. STZ stimulated glomerular phosphorylation of JAK2, STAT1, STAT3, and STAT5. Phosphorylation was reduced in rats treated with captopril, candesartan, and AG-490. Furthermore, both candesartan and AG-490 inhibited STZ-induced increases in urinary protein excretion. In conclusion, our studies demonstrate that hyperglycemia induces activation of JAK2 and the STATs in vivo via an ANG II-dependent mechanism and that these proteins may be involved in the early kidney damage associated with diabetes.

Publisher

American Physiological Society

Subject

Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3