Obstruction-induced changes in urinary bladder smooth muscle contractility: a role for Rho kinase

Author:

Bing Wu,Chang Shaohua,Hypolite Joseph A.,DiSanto Michael E.,Zderic Stephen A.,Rolf Lester,Wein Alan J.,Chacko Samuel

Abstract

Detrusor smooth muscle (DSM) undergoes hypertrophy after partial bladder outlet obstruction (PBOO) in male rabbits, as it does in men with PBOO induced by benign prostatic hyperplasia. Despite detrusor hypertrophy, some bladders are severely dysfunctional (decompensated). In this study, the rabbit model for PBOO was used to determine the biochemical regulation of the contractile apparatus and force maintenance by the detrusor from decompensated bladders (DB). Bladders from sham-operated rabbits served as a control. On stimulation with 125 mM KCl, the DSM from sham-operated (SB) rabbits showed phasic contractions, whereas the detrusor from DB was tonic, exhibiting slow development of force, a longer duration of force maintenance, and slow relaxation. The Rho kinase (ROK) inhibitor Y-27632 enhanced the relaxation of precontracted DSM strips from DB. The enhancement of relaxation of the KCl-induced contraction of DB by Y-27632 was associated with dephosphorylation of myosin light chain (MLC20). The DSM extract from DB showed low phosphatase activity compared with that from SB. The DB also showed more Ca2+-independent MLC20 phosphorylation, which was partially inhibited by Y-27632. RT-PCR and Western blotting revealed similar expression levels of MLC kinase and ROK-α in SB and DB, but ROK-β was overexpressed in DB. These results suggest that the ROK-mediated pathway is partly responsible for the high degree of force maintenance and slow relaxation in the detrusor from DB.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3