Promoter methylation is associated with the age-dependent loss of N-cadherin in the rat kidney

Author:

Akintola Adebayo D.,Crislip Zachary L.,Catania Jeffrey M.,Chen Gang,Zimmer Warren E.,Burghardt Robert C.,Parrish Alan R.

Abstract

The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression ( 19 ). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney. We cloned the 5′ flanking region of the rat N-cadherin gene and observed basic promoter activity in a 3,992-bp region localized immediately upstream of the ATG start site. Nucleotide analysis revealed 87% identity with the human N-cadherin minimal promoter region. Consistent with a role for regulation by DNA methylation, we found that a dense CpG island, which spans 1,104 bp (−1,158 to −55), flanks the rat N-cadherin gene; a similar CpG profile was found in the human N-cadherin 5′ flanking region. Methylation-specific PCR analysis demonstrated that the promoter region of N-cadherin is heavily methylated in aged, but not young, rat kidney. Interestingly, the promoter is not methylated in age-matched, calorically restricted animals. In contrast, the promoter region is not methylated in either young or aged rat liver; this corresponds to the finding that aging is not associated with decreased N-cadherin expression in the liver. In addition, N-cadherin expression is markedly induced in NRK-52E cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine, further suggesting that methylation at CpG in the promoter region may underlie the age-dependent decrease in renal N-cadherin expression.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3