Vitamin D

Author:

Dusso Adriana S.,Brown Alex J.,Slatopolsky Eduardo

Abstract

The vitamin D endocrine system plays an essential role in calcium homeostasis and bone metabolism, but research during the past two decades has revealed a diverse range of biological actions that include induction of cell differentiation, inhibition of cell growth, immunomodulation, and control of other hormonal systems. Vitamin D itself is a prohormone that is metabolically converted to the active metabolite, 1,25-dihydroxyvitamin D [1,25(OH)2D]. This vitamin D hormone activates its cellular receptor (vitamin D receptor or VDR), which alters the transcription rates of target genes responsible for the biological responses. This review focuses on several recent developments that extend our understanding of the complexities of vitamin D metabolism and actions: the final step in the activation of vitamin D, conversion of 25-hydroxyvitamin D to 1,25(OH)2D in renal proximal tubules, is now known to involve facilitated uptake and intracellular delivery of the precursor to 1α-hydroxylase. Emerging evidence using mice lacking the VDR and/or 1α-hydroxylase indicates both 1,25(OH)2D3-dependent and -independent actions of the VDR as well as VDR-dependent and -independent actions of 1,25(OH)2D3. Thus the vitamin D system may involve more than a single receptor and ligand. The presence of 1α-hydroxylase in many target cells indicates autocrine/paracrine functions for 1,25(OH)2D3in the control of cell proliferation and differentiation. This local production of 1,25(OH)2D3is dependent on circulating precursor levels, providing a potential explanation for the association of vitamin D deficiency with various cancers and autoimmune diseases.

Publisher

American Physiological Society

Subject

Physiology

Cited by 1124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hey, Doc, Should I be Taking Vitamin D Capsules Just Like My Neighbor?;The American Journal of Medicine;2024-02

2. Vitamin D metabolism in diabetic nephropathy;Obesity and metabolism;2024-01-22

3. Differentiating Acute Myeloid Leukemia Stem Cells/Blasts;Reference Module in Biomedical Sciences;2024

4. Vitamin D and renal disease;Feldman and Pike's Vitamin D;2024

5. Vitamin D and the cardiovascular system;Feldman and Pike' s Vitamin D;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3