Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy

Author:

Hassoun Heitham T.,Grigoryev Dmitry N.,Lie Mihaela L.,Liu Manchang,Cheadle Chris,Tuder Rubin M.,Rabb Hamid

Abstract

Acute kidney injury (AKI) is associated with significant mortality, which increases further when combined with acute lung injury. Experiments in rodents have shown that kidney ischemia-reperfusion injury (IRI) facilitates lung injury and inflammation. To identify potential ischemia-specific lung molecular pathways involved, we conducted global gene expression profiling of lung 6 or 36 h following 1) bilateral kidney IRI, 2) bilateral nephrectomy (BNx), and 3) sham laparotomy in C57BL/6J mice. Bronchoalveolar lavage fluid analysis revealed increased total protein, and lung histology revealed increased cellular inflammation following IRI, but not BNx, compared with sham controls. Total RNA from whole lung was isolated and hybridized to 430MOEA (22,626 genes) GeneChips ( n = 3/group), which were analyzed by robust multichip average and significance analysis of microarrays and linked to gene ontology (GO) terms using MAPPFinder. The microarray power analysis predicted that the false discovery rate ( q < 1%) and ≥50%-fold change compared with sham would represent significant changes in gene expression. Analysis identified 266 and 455 ischemia-specific, AKI-associated lung genes with increased expression and 615 and 204 with decreased expression at 6 and 36 h, respectively, compared with sham controls. Real-time PCR analysis validated select array changes in lung serum amyloid A3 and endothelin-1. GO analysis revealed significant activation ( Z > 1.95) of several proinflammatory and proapoptotic biological processes. Ischemic AKI induces functional and transcriptional changes in the lung distinct from those induced by uremia alone. Further investigation using this lung molecular signature induced by kidney IRI will provide mechanistic insights and new therapies for critically ill patients with AKI.

Publisher

American Physiological Society

Subject

Physiology

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3