Cerebral blood flow regulation in end-stage kidney disease

Author:

Sprick Justin D.12,Nocera Joe R.234,Hajjar Ihab5,O’Neill W. Charles1,Bailey James1,Park Jeanie123ORCID

Affiliation:

1. Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, Georgia

2. Department of Veterans Affairs Health Care System, Decatur, Georgia

3. Center for Visual and Neurocognitive Rehabilitation, Department of Veterans Affairs Health Care System, Decatur, Georgia

4. Departments of Neurology and Rehabilitation Medicine, Emory University Department of Medicine, Atlanta, Georgia

5. Department of Neurology, Emory University Department of Medicine, Atlanta, Georgia

Abstract

Patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD) experience an increased risk of cerebrovascular disease and cognitive dysfunction. Hemodialysis (HD), a major modality of renal replacement therapy in ESKD, can cause rapid changes in blood pressure, osmolality, and acid-base balance that collectively present a unique stress to the cerebral vasculature. This review presents an update regarding cerebral blood flow (CBF) regulation in CKD and ESKD and how the maintenance of cerebral oxygenation may be compromised during HD. Patients with ESKD exhibit decreased cerebral oxygen delivery due to anemia, despite cerebral hyperperfusion at rest. Cerebral oxygenation further declines during HD due to reductions in CBF, and this may induce cerebral ischemia or “stunning.” Intradialytic reductions in CBF are driven by decreases in cerebral perfusion pressure that may be partially opposed by bicarbonate shifts during dialysis. Intradialytic reductions in CBF have been related to several variables that are routinely measured in clinical practice including ultrafiltration rate and blood pressure. However, the role of compensatory cerebrovascular regulatory mechanisms during HD remains relatively unexplored. In particular, cerebral autoregulation can oppose reductions in CBF driven by reductions in systemic blood pressure, while cerebrovascular reactivity to CO2 may attenuate intradialytic reductions in CBF through promoting cerebral vasodilation. However, whether these mechanisms are effective in ESKD and during HD remain relatively unexplored. Important areas for future work include investigating potential alterations in cerebrovascular regulation in CKD and ESKD and how key regulatory mechanisms are engaged and integrated during HD to modulate intradialytic declines in CBF.

Funder

Department of Veterans Affairs

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | National Institutes of Health

Publisher

American Physiological Society

Subject

Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3